38 research outputs found

    TIC: A Stokes inversion code for scattering polarization with partial frequency redistribution and arbitrary magnetic fields

    Full text link
    We present the Tenerife Inversion Code (TIC), which has been developed to infer the magnetic and plasma properties of the solar chromosphere and transition region via full-Stokes inversion of polarized spectral lines. The code is based on the HanleRT forward engine, which takes into account many of the physical mechanisms that are critical for a proper modeling of the Stokes profiles of spectral lines originating in the tenuous and highly dynamic plasmas of the chromosphere and transition region: quantum level population imbalance and interference (atomic polarization), frequency coherence effects in polarized resonance scattering (partial frequency redistribution), and the impact of arbitrary magnetic fields on the atomic polarization and the radiation field. We present first results of atmospheric and magnetic inversions, and discuss future developments for the project.Comment: 17pages, 7 figures. Accepted for publication in The Astrophysical Journa

    Atomic Scattering Polarization. Observations, Modeling, Predictions

    Get PDF
    This paper highlights very recent advances concerning the identification of new mechanisms that introduce polarization in spectral lines, which turn out to be key for understanding some of the most enigmatic scattering polarization signals of the solar visible spectrum. We also show a radiative transfer prediction on the scattering polarization pattern across the Mg ii h & k lines, whose radiation can only be observed from spac

    Tomography of a solar plage with the Tenerife Inversion Code

    Full text link
    We apply the Tenerife Inversion Code (TIC) to the plage spectropolarimetric observations obtained by the Chromospheric LAyer SpectroPolarimeter (CLASP2). These unprecedented data consist of full Stokes profiles in the spectral region around the Mg II h and k lines for a single slit position, with around two thirds of the 200 arcsec slit crossing a plage region and the rest crossing an enhanced network. A former analysis of these data had allowed us to infer the longitudinal component of the magnetic field by applying the weak field approximation (WFA) to the circular polarization profiles, and to assign the inferred magnetic fields to different layers of the solar atmosphere based on the results of previous theoretical radiative transfer investigations. In this work, we apply the recently developed TIC to the same data. We obtain the stratified model atmosphere that fits the intensity and circular polarization profiles at each position along the spectrograph slit and we compare our results for the longitudinal component of the magnetic field with the previously obtained WFA results, highlighting the generally good agreement in spite of the fact that the WFA is known to produce an underestimation when applied to the outer lobes of the Mg II h and k circular polarization profiles. Finally, we use the inverted model atmospheres to give a rough estimation of the energy that could be carried by Alfv\`en waves propagating along the chromosphere in the plage and network regions, showing that it is sufficient to compensate the estimated energy losses in the chromosphere of solar active regions.Comment: Accepted for publication in The Astrophysical Journa

    CLASP Constraints on the Magnetization and Geometrical Complexity of the Chromosphere-Corona Transition Region

    Full text link
    The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a suborbital rocket experiment that on 3rd September 2015 measured the linear polarization produced by scattering processes in the hydrogen Ly-α\alpha line of the solar disk radiation, whose line-center photons stem from the chromosphere-corona transition region (TR). These unprecedented spectropolarimetric observations revealed an interesting surprise, namely that there is practically no center-to-limb variation (CLV) in the Q/IQ/I line-center signals. Using an analytical model, we first show that the geometrical complexity of the corrugated surface that delineates the TR has a crucial impact on the CLV of the Q/IQ/I and U/IU/I line-center signals. Secondly, we introduce a statistical description of the solar atmosphere based on a three-dimensional (3D) model derived from a state-of-the-art radiation magneto-hydrodynamic simulation. Each realization of the statistical ensemble is a 3D model characterized by a given degree of magnetization and corrugation of the TR, and for each such realization we solve the full 3D radiative transfer problem taking into account the impact of the CLASP instrument degradation on the calculated polarization signals. Finally, we apply the statistical inference method presented in a previous paper to show that the TR of the 3D model that produces the best agreement with the CLASP observations has a relatively weak magnetic field and a relatively high degree of corrugation. We emphasize that a suitable way to validate or refute numerical models of the upper solar chromosphere is by confronting calculations and observations of the scattering polarization in ultraviolet lines sensitive to the Hanle effect.Comment: Accepted for publication in The Astrophysical Journal Letter
    corecore